

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

ELMO Development Setup

Package managers

Note to install the software below we recommend the following package managers:

	Mac OS X: Homebrew

	Linux/Unix: bundled package manager (e.g. apt-get, yum)

Required software

	Ruby

	Use of rbenv [https://github.com/rbenv/rbenv] is recommended.

	Running rbenv install in the project root will install the version you need.

	If not using rbenv, see the .ruby-version file in the project root to get the required version number.

	Bundler is expected to be available. Run gem install bundler to install it.

	Node

	Use of nvm [https://github.com/creationix/nvm#installation] is recommended.

	Running nvm install in the project root will install the version you need.

	Note that nvm does NOT shim Node executables so nvm use is required to load the right Node versions in each new shell session.

	If not using nvm, see the .nvmrc file in the project root to get the required version number.

	The yarn Node module is expected to be installed globally. Run npm install -g yarn to install it.

	Memcached 1.4+

	For development environments, caching is only needed if you are developing a feature that uses caching and want to test it.

	In this case, be sure to increase the default slab page size to 2 MB. This is done by passing -I 2m to the memcached command.

	PostgreSQL 9.4+

	Create an empty database for use by the app (typically elmo_development)

	ImageMagick 6.7+

	ImageMagick is used to resize uploaded images.

	It should be available through any of the package managers listed above. If not it can be built from source.

	Chrome (Browser) 60+

	Used for automated browser testing.

	Chromedriver 2.35+

	Handles running Chrome headlessly for feature specs.

	It should be available through any of the package managers listed above. If not it can be built from source.

	The Rails Gem that talks to Chromedriver is called selenium-webdriver.

	GraphViz 2.36+

	GraphViz [http://graphviz.org/] is used to visualize the relationships between data in the database.

Linters

Linters are strongly recommended for checking your code before opening a PR. The CI system will run linters as well and your PR won’t be approved until all issues are resolved or cancelled by the reviewer.

Setup

The below assume you have installed the Ruby and Node versions specified in .ruby-version and .nvmrc files, respectively.

Once you have nvm and Node installed, the following lines should give you all the required linters:

nvm use
npm install -g coffeelint@2.1.0
npm install -g eslint@4.17.0
npm install -g eslint-plugin-react@7.7.0
gem install rubocop -v 0.52.0
gem install scss_lint -v 0.56.0

Running

To lint your code, simply run:

bin/lint

This will examine any modified or untracked files in your working copy.

To instead examine any new or modified files in your branch (not including uncommitted changes), run:

bin/lint --branch

The latter should be run before opening a pull request.

As part of an effort to clean up old code, you should try to resolve any linter errors in files you touch, unless there are an overwhelming number of them. At bare minimum, the lines you touch should not have any lint.

Tools

Most code editors have plugins for linting. They will identify and let you click directly into problematic lines. You are encouraged to try one out!

For Atom, install the linter package which contains shared stuff, then:

	linter-eslint

	For this one, set your Global Node Installation Path and check the “Use global ESLint installation” box.

	linter-coffeelint

	linter-rubocop

	linter-scss-lint

Running the app

Retrieve project files using Git

git clone https://github.com/thecartercenter/elmo.git
cd elmo

If developing, it’s best to work off the development branch:

git checkout develop

Bundle, configure, and load schema

	Install the required gems by running bundle install in the project directory.

	Install the required Node modules by running yarn install in the project directory.

	Copy config/database.yml.example to config/database.yml and edit database.yml to point to your database.

	Copy config/settings.local.yml.example to config/settings.local.yml and adjust settings as appropriate.

	Copy config/initializers/local_config.rb.example to config/initializers/local_config.rb and adjust settings as appropriate. Note that the reCAPTCHA and Google Maps API Key must be valid keys for those services in order for tests to pass.

	Setup the UUID postgres extension (must be done as postgres superuser): sudo -u postgres psql elmo_development -c 'CREATE EXTENSION "uuid-ossp"'

	Load the database schema: bundle exec rake db:schema:load.

	Pre-process the theme SCSS files: bundle exec rake theme:preprocess

	Create an admin account: bundle exec rake db:create_admin. You should receive a message like this: « Admin user created with username admin, password hTyWc9Q6 » (The password is random, copy it and use on your first login).

	Optionally, you can create some fake data to get things rolling by running bundle exec rake db:create_fake_data.

Run the tests

	Run nvm use to ensure you have the right version of Node.js loaded. Do this once per console session.

	Run rspec.

	All tests should pass. Running them takes about 10-15 minutes.

	If you have trouble debugging a feature spec, you can run it headed (so you can watch the browser go through the spec) by doing HEADED=1 bundle exec rspec spec/features/your_spec.rb.

Start the server

For a development setup, run nvm use && rails s.

Login

	Navigate to http://localhost:3000

	Login with username admin and use the random password that was generated when you ran bundle exec rake db:create_admin (make sure to change the password after login).

	Create a new Mission and get started making forms!

Testing with ODK

	Download the ODK application onto your Android phone or tablet

	https://opendatakit.org/

	Configure your rails development server so ODK can find it

	Run rails s -p 8443 -b 0.0.0.0

	Create a user and password

	Publish your form in ELMO

	Point the ODK app to your development server

	In ODK, go to General Settings > Platform Settings > URL

	For the URL put: http://YOURIP:8443/m/yourmission

	Also put in your username and password

	Retrieve Form

	In ODK, you should now be able to go to Get Blank Form to download the forms from ELMO

Load/Stress Testing

We have two servers to deal with the load testing of the app (loadtest1 and loadtest2). The first one is where we have the app running and the other is a simple instance that will be responsible for firing the requests to loadtest1.

Concepts

We are using a ruby gem to generate/run JMeter test plans. All tasks have the params count and loop. count is the number of threads (simultaneous users) we want to use and loop is how many times the requests should be fired.

When you execute the rake task, it will generate a JMeter test plan (extension .jmx) and execute it. Results are outputted to jmeter.jtl fileand it also generates a log file. The results should be loaded on JMeter with the graph wanted.

Another thing to note about the gem is that we could be using the flood.io [https://flood.io/] service to execute the tests and provide reports with the exact code we have.

Tasks

We have a set of rake tasks under the namespace stress to deal with the load/stress testing of the app.
Some tasks depends on other ones and some are standalone. They execute a JMeter test plan, as mentioned before.

Main tasks (JMeter)

The two main tasks that run JMeter are:

navigate_app

This one just navigates through the basic app links and get the response time for each link. To run it
you just need to specify a valid login/password and a real mission that is set on the app.

sms_messages

Fires the specified amount of sms messages to a certain mission. This task is dependant of the task
create_msgs_signature_file because it needs valid msgs to submit to the server. To run it, first execute the dependant task and then provide the mission name and sms incoming token. Also note that you should provide for the loops param the amount of messages you have on the generated file.

Additional tasks

create_msgs_signature_file

Generates a file with several valid sms parameters. Currently, it’s for a determined form with 10 questions in a certain order… check stress_sms_helper [https://github.com/thecartercenter/elmo/blob/load_test_and_optimizations/lib/task_helpers/stress_sms_helper.rb#L44]. It’s use is to have different random responses to be submitted to a form via the sms_messages task.

deploy_tasks

This copies the main tasks to the loadtest2 server along with the generated file of random valid responses.

load_sms_messages_in_db

Quick implementation to insert a lot of responses for a form on the server database (e.g 10m). It was implemented with some hardcoded values, so it still needs changes to be usable for any form.

Running the tests

Just go to the loadtest2 server and execute the desired rake task. Results will be outputted on the jmeter.jtl file.

Checking results

After executing the tasks on the loadtest2 server, you will need to get the results file and open it on JMeter in order to see the results in an appropriate way. There, you can choose the kind of graph you want to view the information.

Cloning an Instance in AWS

	Make an AMI (Actions > Image > Create Image)

	AMI > Launch

	Protect termination

	Enable T2/T3 unlimited

	Storage: more for DB instance, less for BG instance.

	Security groups

	Allow SSH from all

	Allow all traffic from VPC (default VPC group)

	Don’t set up elastic IP unless it’s a web instance (AWS limits number of elastic IPs)

	Give instance a name like elmo-staging-db.

	Copy public IP and add to your ~/.ssh/config with helpful alias.

	If you are moving your background job processing to a different server, do
sudo -u deploy crontab -r
to delete the whenever-created crontab, which is no longer needed on this server.

Setting up DB Instance

Configure access to DB Instance

	sudo -u deploy crontab -r to delete the whenever-created crontab, no longer needed.

	sudo systemctl stop nginx && sudo systemctl disable nginx

	sudo vi /etc/postgresql/9.4/main/postgresql.conf and set listen_addresses = '*'

	sudo vi /etc/postgresql/9.4/main/pg_hba.conf and add these lines:

 # IPv4 remote connections:
 host all all 0.0.0.0/0 md5
 # IPv6 remote connections:
 host all all ::/0 md5

	sudo systemctl restart postgresql

	Set password for deploy user in elmo_production database (on database instance, privileged user):
sudo su - deploy
psql elmo_production
\password # and enter new password
\quit
exit

Setup DB connection on web instance

	Verify connection is possible:
psql -h <DB_INST_PRIV_DNS> -U deploy elmo_production
Enter the password. Console should open successfully.

	Edit config/database.yml and make it look something like this:
default: &default
adapter: postgresql
encoding: utf8
pool: 5

 production:
 <<: *default
 database: elmo_production
 host: <DB_INST_PRIV_DNS>
 user: deploy
 password: "<DB_PASSWORD>"

(Note quotes around password, just to be safe).

	Restart nginx and ensure site still works.

	Disable local postgres:
sudo systemctl stop postgresql && sudo systemctl disable postgresql

Setting up background worker instance

	Clone app instance per instructions above.

	Do steps under « Setup DB connection on web instance » above.

	Disable local nginx:
sudo systemctl stop nginx && sudo systemctl disable nginx

	Open rails console and ensure a basic query (e.g. User.count) works.

Sample Capistrano config

If using capistrano for deployment, configure something like this:

set :deploy_to, "/u/apps/elmo"
set :rbenv_custom_path, "/opt/rbenv"

set :whenever_roles, %i[bg] # Only deploy schedule.rb jobs to crontab on bg server(s).
set :delayed_job_roles, %i[bg] # Only deploy run delayed_job on bg server(s).
set :delayed_job_workers, 2

server "1.2.3.4", user: "deploy", roles: %i[app web]
server "1.2.3.5", user: "deploy", roles: %i[db]
server "1.2.3.6", user: "deploy", roles: %i[bg]

Basic ELMO Production Setup Guide

This guide assumes:

	You have an Ubuntu server up and running (version 16.04 recommended).

	You have a domain name (e.g. yoursite.example.com) pointing to the server’s IP address.

	Port 443 on the server is open to the world.

	You have ssh’ed to the server as the root user or a user with sudo privileges (root is assumed as the username below).

Create deploy User

This will be the (unprivileged) user under which the app runs.

sudo adduser --group deploy

Install dependencies

sudo apt-get update && sudo apt-get -y upgrade
sudo apt-get -y install nano git-core curl zlib1g-dev build-essential libssl-dev libreadline-dev libyaml-dev libsqlite3-dev sqlite3 libxml2-dev libxslt1-dev libcurl4-openssl-dev libffi-dev libmysqlclient-dev python-software-properties memcached imagemagick

Install Nginx and Passenger

gpg --keyserver keyserver.ubuntu.com --recv-keys 561F9B9CAC40B2F7
gpg --armor --export 561F9B9CAC40B2F7 | sudo apt-key add -
Add HTTPS support to APT
sudo apt-get -y install apt-transport-https
Add the passenger repository
sudo sh -c "echo 'deb https://oss-binaries.phusionpassenger.com/apt/passenger xenial main' >> /etc/apt/sources.list.d/passenger.list"
sudo chown root: /etc/apt/sources.list.d/passenger.list
sudo chmod 600 /etc/apt/sources.list.d/passenger.list
sudo apt-get update
Install nginx and passenger
sudo apt-get -y install nginx-full passenger

Install PostgreSQL and create database

sudo /bin/su -c "echo 'deb http://apt.postgresql.org/pub/repos/apt/ xenial-pgdg main' >> /etc/apt/sources.list.d/pgdg.list"
wget --quiet -O - https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo apt-key add -
sudo apt-get update
sudo apt-get -y install postgresql-client-9.4 postgresql-9.4 postgresql-contrib-9.4 libpq-dev postgresql-server-dev-9.4
sudo -u postgres createuser -d deploy
sudo -u postgres createdb elmo_production -E UTF8 -l en_US.UTF-8 -O deploy
sudo -u postgres psql elmo_production -c 'CREATE EXTENSION "uuid-ossp"'

Setup SSL and configure Nginx

To get a free SSL certificate from LetsEncrypt

sudo rm /etc/nginx/nginx.conf && sudo nano /etc/nginx/nginx.conf

Paste the contents of this config file. Update the server_name setting to match your domain.

Then follow instructions at the Certbot site [https://certbot.eff.org/lets-encrypt/ubuntuxenial-nginx].
The Certbot program should obtain your certificate, add the necessary settings to your nginx configuration file, and restart the server.

To auto-renew your certificate (recommended), add the following to your crontab (type crontab -e):

X * * * * PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin && /root/certbot renew --no-self-upgrade > /root/certbot-cron.log 2>&1

replacing X with a minute a few minutes into the future (e.g. if it’s 12:19:23 now, enter 20 or 21). Wait for that time to pass, then:

cat /root/certbot-cron.log

and ensure the command ran smoothly. It should say that no certificates are up for renewal.

To use an existing SSL certificate

Obtain or locate your SSL certificate’s .crt and .key files.

sudo mkdir /etc/nginx/ssl
sudo chmod 400 /etc/nginx/ssl
sudo nano /etc/nginx/ssl/ssl.crt

Paste the contents of your .crt file, save, and exit.

sudo nano /etc/nginx/ssl/ssl.key

Paste the contents of your .key file, save, and exit. Be careful not to share the contents of your .key file with anyone. Then:

sudo rm /etc/nginx/nginx.conf && sudo nano /etc/nginx/nginx.conf

Paste the contents of this config file. Update the server_name setting to match your domain.

Test your nginx and SSL config

Try visiting http://yoursite.example.com in your browser. You should be redirected to the HTTPS version of the URL,
the secure/lock icon should appear in your browser, and you should get a « 404 Not Found » message. If any of the above is not true, you
will need to troubleshoot. Otherwise, you can continue.

Switch to the deploy user

The commands in the next few sections will be run as the deploy user.
All app-specific commands like bundle, yarn, and rake should always be run as the deploy user.
To switch to the deploy user, do:

sudo su - deploy

Get ELMO source code and change into project directory

git clone -b master https://github.com/thecartercenter/elmo
cd elmo

Install rbenv, Ruby, and Bundler

git clone git://github.com/sstephenson/rbenv.git ~/.rbenv
echo 'export PATH="$HOME/.rbenv/bin:$PATH"' >> ~/.bashrc
echo 'eval "$(rbenv init -)"' >> ~/.bashrc
git clone git://github.com/sstephenson/ruby-build.git ~/.rbenv/plugins/ruby-build
echo 'export PATH="$HOME/.rbenv/plugins/ruby-build/bin:$PATH"' >> ~/.bashrc
exec $SHELL
This step will take a few minutes.
rbenv install `cat .ruby-version`
echo "gem: --no-ri --no-rdoc" > ~/.gemrc
gem install bundler
exec $SHELL

Install nvm, Node.js, and Yarn

wget -qO- https://raw.githubusercontent.com/creationix/nvm/v0.33.11/install.sh | bash
exec $SHELL
nvm install
npm install -g yarn

Configure the App

cp config/database.yml.example config/database.yml

You shouldn’t need to edit database.yml if you followed the PostgreSQL setup instructions above.

cp config/initializers/local_config.rb.example config/initializers/local_config.rb
nano config/initializers/local_config.rb

Read the comments in the file and enter sensible values for the settings. Then:

cp config/settings.local.yml.example config/settings.local.yml
nano config/settings.local.yml

Similarly, read the comments in the file and enter sensible values for the settings.

Entering a functioning email server is important as ELMO relies on email to send broadcasts, and registration info, and password reset requests. Once you have ELMO running, you can test your email setup by creating a new user for yourself and delivering the login instructions via email or by using the password reset feature.

Prepare the App

Set Rails environment.
echo 'export RAILS_ENV=production' >> ~/.bashrc
exec $SHELL
nvm use

Install gems and yarn packages.
bundle install --without development test --deployment
yarn install

Setup cron jobs
bundle exec whenever -i elmo

Load database schema
bundle exec rake db:schema:load

Precompile assets
bundle exec rake assets:precompile

Generate admin user (note the password that is output)
bundle exec rake db:create_admin

Create a Delayed Job service

Delayed Job handles background tasks. It is best to create a systemd service wrapper for it so that it will start
when the system is rebooted. (Nginx/Passenger handle starting the main web service).

To do so:

exit # Return to root/privileged user
sudo nano /etc/systemd/system/delayed-job.service

Now paste the contents of this configuration file and save. Then:

sudo systemctl daemon-reload
sudo systemctl enable delayed-job
sudo systemctl start delayed-job

If you then run:

sudo systemctl status delayed-job

you should see the text « Active: active (running) » in the output. If something went wrong, there will be some
log output that will help you determine the issue.

Check out the site!

You should now be able to visit https://yourdomain.example.org in your browser (replace with your real domain name).
The ELMO login screen should appear. Login with username admin and the password created above.

See the ELMO Documentation [https://elmo-nemo.readthedocs.io] for help on using your new ELMO instance!

Custom Theme

You can define a custom theme for the application. In the project root, run:

bundle exec rake theme:init

This will create the files /theme/style.scss, /theme/logo-light.png, and /theme/logo-dark.png.
Update those files to reflect the desired theme. Ensure your new logos are the same size as the examples.

You will need to run nvm use && bundle exec rake assets:precompile (and re-start your server if it’s currently running) for the theme to take effect.
The compiler will tell you if there are any errors in your style.scss file.

Upgrading

Upgrading should be done in stages. Start with the stage closest to your current version.

Upgrading to v5.16.2

	Follow the “General Upgrade Instructions” below to upgrade to v5.16.2.

	If you encounter a “mismatched superclass” error when migrating, try running the migrate command again.

Upgrading to v6.11

	Install PostgreSQL (see above).

	As deploy user, in elmo directory on server, cp config/mysql2postgres.yml.example config/mysql2postgres.yml

	In config/mysql2postgres.yml, ensure the database under mysql_data_source matches your MySQL database name.

	Ensure a database elmo_production exists in PostgreSQL (note that anything in this DB will be destroyed).

	Ensure you can connect to the database (e.g. using psql elmo_production) from the user account that runs the app. If you need a password or different host, be sure to update the mysql2postgres.yml file to reflect this.

	It is best to stop nginx at this point to prevent any data corruption.

	Run bundle exec mysqltopostgres config/mysql2postgres.yml.

	If you get the error MysqlPR::ClientError::ServerGoneError: The MySQL server has gone away, check your DB name, username, and password in config/mysql2postgres.yml.

	Ignore the no COPY in progress message.

	Update config/database.yml to point to Postgres. Use this file [https://raw.githubusercontent.com/thecartercenter/elmo/v6.11/config/database.yml.example] as a guide. The test and development blocks are not needed.

	If you are using a regular DB backup dump command via cron, be sure to update it to use pg_dump instead of mysqldump.

	You should now follow the “General Upgrade Instructions” below to upgrade to v6.11.

Upgrading to v7.2

	Install Ruby 2.4.3 and Bundler:

 cd "$(rbenv root)"/plugins/ruby-build
 git pull
 cd -
 rbenv install 2.4.3
 rbenv global 2.4.3
 gem install bundler

	Make a backup of your database, as deploy user: pg_dump elmo_production > tmp/pre-v7.2-dump.sql

	ls -l tmp and ensure the v6-dump.sql file is non-zero size.

	As root/privileged user: sudo -u postgres psql elmo_production -c 'CREATE EXTENSION "uuid-ossp"'

	Follow the “General Upgrade Instructions” below to upgrade to v7.2. Your data will be migrated to use UUIDs, and this may take awhile. Then you’ll be all up to date!

Upgrading to v8.12

	As the deploy user, install nvm, the appropriate node version, and yarn:

 curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.33.11/install.sh | bash
 exec $SHELL
 nvm install 8.9.4
 npm install -g yarn

	Follow the “General Upgrade Instructions” below to upgrade to v8.12.

Upgrading to v9.0

	The data migrations in this upgrade may take some time if you have a lot of data. To protect your data, stop your server and DelayedJob, as privileged user: sudo systemctl stop nginx && sudo systemctl stop delayed-job

	Make a backup of your database, as deploy user: pg_dump elmo_production > tmp/pre-v9.0-dump.sql

	Follow the “General Upgrade Instructions” below to upgrade to v9.0.

	Start your server and DelayedJob: sudo systemctl start nginx && sudo systemctl start delayed-job

Upgrading to v9.1

	Make a backup of your database, as deploy user: pg_dump elmo_production > tmp/pre-v9.1-dump.sql

	Follow the “General Upgrade Instructions” below to upgrade to v9.1.

	Run bundle exec rake option_set_reclone to repair option set references that may exist in your database due to a bug in a previous version.

Upgrading to v9.2

	Follow the “General Upgrade Instructions” below to upgrade to v9.2.

	Follow the instructions above under “Configure the App” to setup your settings.local.yml file.

Upgrading to lastest master

	Follow the “General Upgrade Instructions” below.

General Upgrade Instructions

ssh to your server as the same root/privileged user used above. Then:

sudo su - deploy
cd elmo
nvm use # v8.12 or higher only
git pull

If you want to upgrade to a particular version of ELMO, then try:

git checkout vX.Y

where X.Y (or X.Y.Z) is the version number you want. Otherwise you should ensure you’re on the master branch:

git checkout master

If you get an error that Your local changes to the following files would be overwritten by checkout, you can usually
fix it by doing git reset --hard. This will wipe out any local changes to the code, which shouldn’t be a problem
unless you changed it on purpose for some reason.

Then:

bundle install --without development test --deployment
bundle exec whenever -i elmo
bundle exec rake assets:precompile
bundle exec rake db:migrate

Now be sure to check the commit history of the local config file [https://github.com/thecartercenter/elmo/commits/develop/config/initializers/local_config.rb.example] and/or run:

diff config/initializers/local_config.rb.example config/initializers/local_config.rb

to see if anything needs to be updated in your local configuration.

Finally:

exit # Back to privileged/root user
sudo systemctl restart delayed-job
sudo systemctl restart nginx

Then load the site in your browser. You should see the new version number in the page footer.

Troubleshooting

If the above is not successful, contact info@getelmo.org for assistance.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

